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WITH TEMPERATURE DEPENDENT HEAT GENERATION

Abstract—A theoretical analysis of internally energised porous reactor is presented. Constant and
temperature-dependent rate of heat generation are assumed. The fluid passed through the heated porous
element medium changes phase from liquid to vapour and the vapour is further superheated. It is
assumed that the regions of different phases are “separated” by two phase change “interfaces”, the first
of which denotes the average distance where evaporation starts and the second denotes the average
distance where complete evaporation is reached.

The characteristics of the various parameters affecting the performance of a hollow cylindrical porous

element are evaluated and presented for a representative range of the viscous flow regime where the
inertia forces are neglected.

The concept of generating temperature-dependent rate of heat within the porous element is aimed at
gaining stability in operation and protecting the solid from burnout.

NOMENCLATURE
C;,C,, constants of integration;
C,,  specific heat;
Cp..» liquid to vapor specific heat ratio (C,,/C,,);
D, dimensionless group (= C,m/2nk7);
F, temperature factor [ = f(To — Tp)],
equations (4, 7);
Jas Jakob number [ = Ap,/C,,pd(To - T))];
k, thermal conductivity;
kr,  effective conductivity of the saturated matrix;
m, mass flow rate;
M,  dimensionless mass flow rate
[=m/pi(ro-r:)];
M,  dimensionless group, equations (15b);
N, dimensionless rate of heat generation
[_ qr(ro— ri)z] .
kr(To—T))’
D, pressure;
P,  dimensionless pressure [ = (p—po)/(pi— po)];
Pe,  Peclet number [ = o(ro—r;)/o;];
4, rate of heat generation per unit time per
unit volume;
q.,  rate of heat generation at the reference
temperature, T,;
r, radial coordinate;
R, dimensionless radial coordinate
[= rfiro—r:)];
T, temperature;
T, reference temperature (= T*);
Uy, radial velocity;
b, overall average Darcy-velocity
(= x &—_pg> , €quation (4);
W ri—ro
Vv, dimensionless Darcy-velocity (= v,/5);
v, voltage, equation (2a).
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Greek symbols

thermal diffusivity;
temperature-coefficient of electrical
resistance;

density;

liquid—vapor density ratio (= pi/p,);
permeability of porous structure;
latent heat of vaporization;
electrical resistance;

dimensionless temperature
[=(T-T*(To-T;

viscosity;

kinematic viscosity (= u/p);
liquid—vapor kinematic viscosity ratio

(=vi/v,).

Subscripts and superscripts

av,

B T

S

average value;

start of evaporation;
end of evaporation;
fluid (liquid or vapor);
internal side of cylinder;
liquid;

external side of cylinder;
radial, or at the reference temperature;
effective property;
vapor;

saturation state;
number of iteration.

INTRODUCTION

THE INTEREST in the study of convective two-phase
heat transfer in porous media arises from its wide
spectrum of engineering applications. Most of the
previous studies are related to drying or transpiration
cooling systems [1-10], which are usually subjected
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to a prescribed temperature or heat flux at their
surfaces. These solutions do not apply to problems
involving distributed heat sources within the porous
medium. There appears to be little information avail-
able on the important problem of coupled heat and
mass transfer in porous media with internal heat
generation [11-15].

The concept of internally energised porous medium
is of interest in various application areas. These include
nuclear fuel, cladding and shielding, solar collectors,
compact regenerator design, boiling water reactor
design etc. Also, the short residence time for fluid
passing through the porous element is a feature which
may lead to its use in various chemical engineering
processes.

The present study deals with the use of fluid flow
through internally heated porous medium, in particular
in connection with the novel methods of energy pro-
duction. The solid particles forming the porous struc-
ture may be nuclear or electrically heated. Heat may
be generated also due to the absorption of radiation.
The fluid passed through the heated porous medium,
may change phase from liquid to vapor and the vapor
be further superheated. The enormous specific surface
area enables high specific ratings even with small
temperature driving forces between the solid and the
fluid. The principle may prove useful where high
coolant rates are required, or be applied for the pro-
duction of steam of variable controlled quality (e.g. in
food processing and pharmaceuticals).

Uniform distribution of fluid flow into the porous
structure is essential for a stable operation. In order
to achieve a uniform flow distribution, it was proposed
in previous studies to feed the fluid stream through a
dispenser (a porous body of a smaller permeability)
before being fed to the heated porous body. However,
the pore structure of a permeable material may be
variable on a “microscopic” scale, and local non-
uniformity of flow almost always may be resulted. The
material area being starved of coolant would rise in
temperature and the consequent excursion of tempera-
ture leads to the burn out of the element. Hence, new
methods are required to ensure the stable operation
of an internally heated porous element.

The method presented in this study is based on
generating temperature-dependent rate of heat char-
acterized by a decreasing function with the temperature.
Thus, as the temperature rises, the rate of heat gener-
ation decreases and the temperature falls-down. The
concept of generating internal heat of a temperature-
dependent rate seems to be promising in concern to
stability of operation and long-life element due to the
dynamic self-control, which such an element possesses.

It is reasonable to conceive of two basic geometries
for such a porous element: The plain and the cylindrical
where in the later the flow may be from either the
inside or the outside. In recent years, sintered porous
elements have become available in the form of hollow
cylinders (or tubes). These have greatly increased their
range of application. This brings the author to analyse
the cylindrical shape.

THE THEORETICAL MODEL AND GOVERNING EQUATIONS

Consider a unit of a hollow porous cylinder, Fig. 1.
The inner and outer radii are r; and r,, respectively.
Liquid at temperature 7; and pressure P, is continuously
fed to the center of the cylinder. The liquid is assumed
to flow radially outwards through the porous medium
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(REGION I)

Fic. 1. Schematic presentation of physical system and
coordinates.

by an imposed total pressure gradient (p;—p,), where
Do 18 a constant pressure maintained at the outer
surface of the cylinder. In the pressure gradients con-
sidered here, the flow is slow enough so that the viscous
forces dominate over the inertia forces. Because of the
complex structure of the porous medium it is impossible
to formulate the problem in terms of the actual flow
through the pores. As in most studies on the viscous
regime flow through porous medium, the Darcy’s law
is applicable:

v, = -—fmdj (D

pupdr

where k is the permeability of the porous material,
uy is the fluid viscosity, v, and dp/dr are the radial
velocity and the radial pressure gradient. The liquid
passed through the heated porous medium, is firstly
heated to saturation state (region I), changes phase
from liquid to vapor (region If), and the vapor is
further superheated (region III) to an exit temperature
Ty, greater than the saturation temperature of the
liquid corresponding to the pressure p,. The tempera-
ture and pressure at the evaporation region are the
saturation temperature and pressure 7* and p* respect-
ively, where p, < p* < p; and T*(p;) < T*(p*) < T*(p,)-
For the case under consideration where equation (1)
is applicable, the total pressure gradient is relatively
small. Hence, T*(p;) ~ T*(p,), and the saturation tem-
perature at p* is firstly approximated by T*((p;+ p,)/2),
and is corrected by solving for the pressure distribution
(see below).

Consistent with slow flow through the porous
medium it is reasonable to assume that the temperature
of the solid and the adjacent fluid are equal. Thus the
heterogeneous solid-fluid system is treated as a con-
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tinuum, which allows average or “macroscopic”
governing equations to be applied. In order to apply
an average energy equation, it is necessary to determine
an effective thermal conductivity of the saturated
porous medium. Hashin and Shtrikman [17] derived
an equation for the upper and lower bounds of the
effective conductivity of heterogeneous materials, and
[18-24] discussed the prediction of effective conduc-
tivities. For the problem under consideration, the upper
bound from [17] is utilized to evaluate the effective
conductivity for the saturated matrix. (Taking an upper
and lower bound will yield limits on the solution of
the problem.) The average energy equation can be
written in the form {7, 25]:

oT 0 oT
Pfcpf06~r=5;<kr’67>+q (2

where kr is the effective conductivity (consisting with
assuming same fluid and solid temperatures) and g is
the rate of heat generated within the porous structure
per unit time per unit volume. In the case of electrical
heating, g is usually given by:

B V2/Q, _ qr
= 13 pT-T) " 1+B(T—T)

where V is the electrical voltage, T, is a reference
temperature, Q, is the electrical resistance at T;, and
is the temperature-coefficient for Q,. Hence, g, is the
rate that would have been generated at temperature T,.
The equation of continuity may be written in the
form [7,26]:
a(p frv,)

or

(2a)

=0 (3)

With reference to the following dimensionless variables:
R=rfro—r:) P=(p—p)pi—ps) 0=(T—-T*YT,~T)

G _KPiTPo V=ov/i M=m/pir,—r:]
Wi ri—7To
A 1] —_F.
Jo= P pe 5o 1) @
Cpo(To—T) %

Cpom Qr(ro_ri)z

D=2 = F=8(To—T
2nks (To—T)kr AT :

Py = Pl/Pv Vip = vl/vv Cp,v‘, = Cp,/cp,,

the continuity, motion and energy equations are trans-
formed to the dimensionless forms:

5
2 (VR)=
S (VR)=0 ©
dpP
=2
dR ©
4% 1-Ddd N
iR R aRT1TFRe- " 7)

The boundary conditions applicable to this problem
are:

R=R.(orR;)) P=P* 6=0 (8b)
R=R, P=0 0=24, {8¢c)

where, R, and R, are the “interfaces” position. See
Fig. 1. Actually, because of the thermal conductivity
of the fluid, the fluid temperature will probably rise
slightly before it enters the element at R = R;. How-
ever this effect was found negligible [27]. Thus, the
temperature at R = R; is assumed here to remain
constant at the inlet value, §;. Note that, the dispenser
which is usually placed before the heated porous
element provides thermal insulation between the feed
and the heated element.) The conditions at the outer
radius, R, are maintained by the external vapor
chamber. The evaporation in the intermediate region
is assumed to proceed at constant temperature and
pressure. This is reasonably valid in the case under
consideration (in as much the total pressure gradient
is by itself relatively small).

The simultaneous solution of motion, energy and
continuity equations [equations {5)—(7)] yields the tem-
perature distribution within the medium, the mass flux
(or the heat load of the porous reactor) and the position
of the phase-change “interfaces” (i.e. r, and ry).

Energy balances

The physical variables of the system may be further-
more inter-related by applying energy balances over
the three regions (see Fig. 1). For the sake of clarity
these are brought in the dimensional forms:

fe

mC,(T*—T) = 21:J

T
grdr—2nkq,r Eld—

(Region 1) (9a)
ra aT .
mi =2xn J grdr+2nkr,r O (RegionII) (9b)

M[ColT* = T) + i+ Cp (To— T*)]

ro dT
=2z [ grdr—2nkr,r R ' (Overall balance) (5¢)
¥ olr=r;

o dT
qrdr—2nky,r—

T lr=rq

(Region III-—not used).

Cp(To—T*) = 21 f

ra

(6d)

These balances may be simplified by neglecting the
conduction fluxes (= —krdT/dr) at the boundaries
r;, e, ra and ro. Exact calculations by the author show
that the boundary fluxes are fairly small compared to
the rate of heat generated within region I where the
liquid is heated to saturation, and region II where the
saturated liquid evaporates. Reasonable accuracy
(1.25-2.6%) was achieved by utilizing the energy
balances over these two regions, combined with the
overall energy balance.

Solution for the mass flux
Substituting equation (6) into (5) and integrating
yields:

P=C;InR+C,

where C;, C, are two constants of integration.
Utilizing (P;, P*) and (P*, P,) as the boundary-condi-
tions for the liquid and vapor regions respectively,
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yields the pressure distribution as a function of the
two “interfaces” (at R, and R;) position:
In(R/R))

In(R./R,) (102)

. In(R/R,)

’ In(R4/R,)

Pi=1—(1—P%

(10b)

where the subscripts [ and v refer to the liquid and
vapor regions, respectively.
The mass flux in each region is given by:

m=2nrvyps (11a)
or in dimensionless form:
M=—""_ — 2R (11b)
tprlre—ri)

where vy (or V) is the Darcy velocity as is defined by
equation (1) [or equation (6)] and by the local pressure
gradient (dp/dr). When the latter is evaluated from
either of equations (10) and is combined with equations
(6) and (11b) the following are obtained:
. Hy 1—-P*
M, = =2z
" hipslre=r) T In(RJR)
m[! P*

— =2
l’qu("o - ri) ln(Ro/Rd)

(12a)

M, = (12b)
Since steady-state is considered the mass fluxes in the
liquid and vapor regions are identical. Equating equa-
tions (12a) and (12b) yields the saturation pressure:

P* — 11’1 (Ro/Rd)

= In(R/R)) + In(Ro/Ra) (13

Equation (13) is used now to eliminate P* in either of
equations (12). This yields the dimensionless mass flux
as a function of the “interfaces” position:

M, = M, = 1/[In(R./R;) + In(R,/Ry)]. (14)

Note that once the “interfaces”™ position R, and R, are
known, equations (10) and (14) may be used to evaluate
the pressure distributions and the mass flux through
the porous medium.

Solution of the energy equation

(A) Constant rate of heat generation. In the case
under consideration, F [in equation (7)] vanishes and
equation (7) is a linear equation of the first order. Its
solution is given by:

RD
H=C17-MR2+C2 (15a)
where
N .
%2_1) if D#2
M= (15b)

N
?(InR—%) if D=2.

The constants of integration C; and C, are now
evaluated for each of the liquid and vapor region by
introducing the boundary-conditions as in equation (8).

For D 2 this yields:

R” R
0= [—0;+M(R?—R})] RO R My(R* = R})+ 0,
D#2 (16a)
RP: — R}
0, = [6o+M,(R; —R3)] kv’_i?“ M,(R? - R3)
D#2  (l6b)

where [, v refer to the liquid and vapor region respect-
ively, and M is as defined in (15b). The corresponding
expressions for D = 2 are:

N/ R? R?
=] —;+—=|R:InR.~~-=~R?InR; +
01 {: 91+2<clﬂ ¢ 5 iin +2>]

R*—R} N R? R?
x~————~<RzlnR—T—Ri21nR;——2—' +0,‘

RZ-R? 2 2
D=2 (16¢)
N R? R}
,=|68,+—[R2InR,———RZInR;+——
6, I: +2( n 5 4 mnry 5
R*-R} N/ _, R* Ri
Xm—‘i(R lnR—7—RdlnRi—~5 +0i

D=2 (16d)

Integration of equations (9) for constant g, normalizing
and combining the first two yield:

Ry = [R?—pi o Ju(RZ— RE)/O:]* (17)

substituting M and R, into equation (9c¢) yields:
0, N R,+R;
- Gi Ja_ :
Cp:,p * ? Pevl,v Ra - Ri
x {In[R,/(R? = p1,o Ju(RE — R})/0:)]
— Vi ln(RC/Rl)} =0.

(18)

Equation (18) may be solved for R, based on known
values of 6;, 6, and N. Starting with initial guess
for R,, equation (17) is used to evaluate R,. Based
on these R., R, values, the corresponding ¢ (of N) is
calculated by equation (9b). The calculated N is in-
serted into equation (18), the solution of which yields
a new value of r, which is compared with the previous
one, until convergence is achieved.

(B) Temperature-dependent rate of heat generation. In
the case of temperature-dependent rate of heat gener-
ation within the porous matrix, and in view of the
g-function in equation (2a), the energy equation turns
to a non-linear equation in T. [F # 0 in equation (7)].

There may be a great interest in analytical solutions,
both exact and approximate, which may serve to a
further understanding of the physical phenomena. The
author is aware of other forms for ¢ which may lead
to close-form analytical solutions. However, such
solutions are limited to the specific g-function used.
A general procedure for solving the present problem
for a non-linear form of g [as in equation (2a)], might
prove useful for a wide spectrum of g-functions. More-
over many engineering situations require fast and
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accurate results, Therefore a general calculation pro-
cedure for numerically solving equation (7) is outlined
in what follows:

(a) Starting the first iteration (j = 0) the solution of
constant g(= g,)is initially assumed. Each of the regions
1 and 111 is divided into increments of (R.—R;)/i and
(R,— Ry)/i, respectively. (In region II the temperature
is constant.) For any iteration j+1, the calculated
results of the previous iteration j are assumed.

(b) Utilizing the temperature profile 6/ from (a),
average N in the first increment (i =0, to i = 1) and
use this NZ, [=(N/*! 4 N/i,)/2] to calculate the new
temperature [equations (16)] at i =1, §'*', based on
the inlet temperature at i = 0. The temperature at i +1,
0i11 is similarly evaluated from the value at i, 6*!,
and the average NJ, overito i+ 1.

(c) Continue b for the liquid and vapor regions,
until the complete new profile #i*! is obtained.

(d) The integrals in equations (9) are numerically
calculated and used to evaluate the new values of
Ri*' and R{*! in a similar manner as in (A).

(e) Calculate Y (67! — 0}y

(f) Repeat (b) to (e) until the value from (e) ap-
proaches a small value.

A general computer program was set for solving the
temperature profiles, the “interfaces” position and the
possible mass flux for a given set of operating-condi-
tions. The value of i and j are determined along the
way according to accuracy requirements and speed
considerations. The program was demonstrated by
utilizing the g-function in equation (2a). Some of the
calculated results are presented below.

PRESENTATION OF CALCULATED RESULTS

The present study represents an attempt to introduce
the inter-relations between the characteristic operation
parameters of internally heated porous reactor. The
parameters affecting the performance of such an
element are (a) the rate of heat generation within the
solid, (b) the rate of flow of working fluid, (c) the
degree of pre-heating of the incoming liquid feed and
(d) the degree of superheat of outcoming vapor. These
are presented in the following for a constant rate of
heat generation [ =0 in equation (2a)] and for a
temperature-dependent rate of heat generation. The
solution of later case is iteratively obtained as detailed
in previous section. Since the results are obtained
numerically, it is interesting to note the point values
of the basic variables R., R; and the temperature
profiles through the various regions.

(Note that the following calculated results were
evaluated for water as a working fluid and a hollow
cylindrical porous element of a constant porosity
{=0.39) and inner and outer radii of 1.0cm and 2.0 cm.
Thus the dimensionless radii R;, R, are 1.0 and 2.0
respectively.)

Figures 2—4 represent the dimensionless radial dis-
tance of the two phase-change “interfaces” for various
degrees of superheat and various values of Jacob
number. Note that as 6, — 0 (or §; » —1.0) the out-
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coming vapor is at saturation temperature T*, and
hence R; — R,, almost unaffected by the temperature-
coefficient, . However, the variation of R, with g is
by contrast more pronounced. As 8, — 1.0 (or 6, - 0)
the incoming liquid is at the saturation temperature
T*, and hence R.— R;, again unaffected by the
temperature-coefficient, while R; being the most
affected variable.
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The variation of the dimensionless mass flux with
the degree of superheat and the temperature-coefficient
of the heat generation is shown in Figs. 5-7. Also
included in these figures the dimensionless rate of
heat generation, N, corresponding to the reference
temperature 7, = T* [see equations (2a, 4)].

In view of equation (14), the possible mass flux
through the porous element is determined by R, and
Ry. As the degree of superheat is increased, the phase-
change “interface”, R;, moves inside while R, remains
almost unchanged. Thus, the mass flux and hence the
required rate of heat generation should both decrease
[see equation {14)]. Similarly, for low superheat, the
increase in R, brings about a corresponding increase
in the mass flux.

As is demonstrated in Figs. 5-7, increasing f at low
superheat yields a higher mass flux while at high
superheat the mass flux is reduced by increasing f.

This behavior is due to the value chosen for the
reference temperature (T, = T*). (Where the reference
temperature equals 7;, the increase of § should yield
a decrease in the possible mass flux through the whole
range.)

The mass flux and the rate of heat generation deter-
mine the values of the dimensionless groups D and M
which appears in the temperature profiles. Typical
temperature profiles for high, low and intermediate
superheat are represented in Figs. 8-9. Note that, 6,
denotes the temperature variation in the liquid heating
region and 6, corresponds to the temperature variations
in the superheating region. The intersection of 6, and
8, curves with the saturation line (6 = 0) indicates the
values of R, and Ry, respectively.

SUMMARY AND FINAL REMARKS

A theoretical analysis of internally energised porous
reactor has been presented. The concept of generating
temperature-dependent rate of heat within the porous
element is aimed at gaining stability in operation and
protecting the solid from burnout.

In the problem discussed, liquid at a constant tem-
perature is fed into one end of a porous medium,
and a superheated (or saturated) steam is produced at
the opposite end of the element. The regions of different
phases are “separated” by two phase-change “inter-
faces”. The first interface (at R = R.) denotes the
average radial distance where evaporation of the
saturated liquid starts while the other “interface” (at
R = R;) denotes the average radial distance where
complete evaporation is reached.

The analysis is applicable for predicting the charac-
teristics of a porous reactor producing vapor where
small quantities of variable controlled superheatings
are required. The principle may also be applied for
cooling of nuclear particles by evaporating high latent-
heat fluid while flowing through the particles bed.

Based on various values of the temperature-coef-
ficient, the characteristics presented so far enables one
to predict the mass flux (or the reactor load) for a
required degree of superheat and an available rate of
heat generation.

In steady-state operation, the use of temperature-
dependent rate of heat generation might cause a sig-
nificant decrease in the possible mass flux through the
element. This decrease is well pronounced at relatively
high superheat and high Jacob number.

The analysis presented here is restricted to low flow
rates of coolant through the porous medium, and is
based on the temperature-dependent rate as is defined
in equation (2a). Also, the upper bound of effective
properties (of solid and fluid) as is given by Hashin
and Shtrikteman [17] has been used. An extended
analysis for high flow rate and a general function of
the heat generation rate with the local temperature is
now underway. ,

Finally one can conceive of a reactor formed by three
separated cylindrical concentric elements. Gaps are
incorporated between the cylindrical layers. Saturated
liquid from the first element is fed to the intermediate
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layer where evaporation takes place, and the saturated
vapor is now fed to the superheating element. The rate
of heat generation in each portion can be adjusted
correspondingly to its size and the amount of energy
required. Similar approach may be applied to analyse
such a system.
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TRANSFERT THERMIQUE STATIONNAIRE A L'INTERIEUR D'UN MILIEU POREUX
AVEC PRODUCTION DE CHALEUR DEPENDANT DE LA TEMPERATURE

Résumé—On présente I'étude théorique d’un réacteur poreux avec source interne d’énergie. Le taux de
production de chaleur est supposé constant ou fonction de la température. Le fluide traversant le milieu
poreux chauffé subit un changement de phase liquide-vapeur et la vapeur est ensuite surchauffée. On
suppose que les régions relatives aux différentes phases sont séparées par deux interfaces de changement
de phase: le premier indique la distance moyenne sur laquelle I'évaporation débute et le second indique
la distance moyenne a laquelle une évaporation compléte est atteinte.

On évalue les caractéristiques des divers paramétres qui agissent sur le fonctionnement d’un élément
poreux creux cylindrique et les résultats sont présentés dans un domaine représentant le régime
d’écoulement visqueux dans lequel les forces d’inertie sont négligées.

L’idée d’un apport de chaleur, fonction de la température a l'intérieur de I'élément poreux, vise a

améliorer la stabilité de 'opération et a protéger le solide de I’asséchement.

STATIONARER WARMETRANSPORT IN POROGSEN MEDIEN MIT
TEMPERATURABHANGIGER WARMEERZEUGUNG

Zusammenfassung—Es wird eine theoretische Analyse fiir einen pordsen Reaktor mit innerer Eigen-
wirmeerzeugung angegeben. Konstante und temperaturabhangige Wéarmeerzeugung sind angenommen.
Flissigkeit dringt durch das erhitzte pordse Element, unterliegt einer Phaseninderung zu Dampf, und
der Dampf wird weiter tiberhitzt. Es wird angenommen, daB die Bereiche unterschiedlicher Phasen durch
zwei Phasentrennflichen abgeteilt sind: die erste gibt an, wo die Verdampfung beginnt und die zweite,

wo die Verdampfung beendet ist.



Heat transfer within porous medium

Die Charakteristika fiir verschiedene Parameter, die die Wirkungsweise eines pordsen Elements in
Hohlzylinderform beeinflussen, werden ermittelt und fiir einen reprasentativen Bereich der Stromung
zdher Fliissigkeit angegeben, wobei Trégheitskrafte vernachldssigt werden.

Die Voraussetzung temperaturabhingiger Wirmeerzeugung im pordsen Element sollte der Stabilitat

der Arbeitsbedingungen dienen und das Festkdrperteilchen vom Ausbrennen schiitzen.

CTALIMOHAPHBIN TEITJIOOBMEH B MOPHMCTOW CPEJE C 3ABUCAIIM
OT TEMIIEPATYPLI TEITJIOBBIAETEHWEM

Annotamusi — JJaeTcs TEOPETHYECKMP aHAIM3 MOPHCTOTO DPEakTopa ¢ BHYTPEHHHM BBIAEICHHMEM
sueprud. IIpennosaraercs, 4To CKOPOCTL BBIOENEHUS Te/a 3aBHCUT OT TeMmeparypsl. KHAKoCT,
OpoliedIuas vepe3 HArpeTHI MOPHCTHIM 3JEMEHT, MpEeBpalliaeTCs B NAp, a [ajtee IPOMCXOAHT
neperpee napa. [Ipennonaraerca, 4To 061acTH pasIMHEIX Ga3 «pa3nessIOTCA» ABYMA FPAHHIAME,
TepBas M3 KOTOPHIX NMPEACTAB/IAET CPEAHEE PACCTOSHHE, HA KOTOPOM HAYMHAETCH MCHAPEHHE, a
BTOpasf — CpefHee PacCTOSHHE, Ha KOTOPOM NPOMCXOAUT HOHOE HCHAPEHHE,

PaccUMTHIBATINCh pPA3MUYHBIE MAPAMETPhl, BIHUAIOUIME HA XapPaKTepHCTUKH TIONOTO LMIHHIPH-
Y€CKOro TMOPUCTOTO 3eMeHTa. ‘OHM MpedCTaBIeHB! /I AHANA3OHA BSI3KOTO PEKMMA TEYEHHS C
npeHeGPeXnMO MaNbIMK CHIAMH HHEPLIKH.

VcinoBrHe 3aBHCHMOCTH CKOPOCTH BLIAETEHHS TEm/la OT TEMICPATYphl B NOPHCTOM 3JIEMEHTE
HCTIONB3YETCA ISl JOCTHKEHHS YCTOMYHMBOCTH PeXHMa paGoThl M 3alUMTHl TBEPOOrO TENA OT
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